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Single factor experiment

Suppose we have a treatment - different levels of a single factor that we wish
to compare.
There will be, in general, n observations under the i th treatment.

Typical Data for a Single Factor Experiment
Treatment

(level) Observations Totals Averages
1 y11 y12 · · · y1n y1. ȳ1.

2 y21 y22 · · · y2n y2. ȳ2.
...

...
... · · ·

...
...

...
a ya1 ya2 · · · yan ya. ȳa.

TOTAL y.. ȳ..

yi. =
n∑

j=1

yij y.. =
a∑

i=1

n∑
j=1

yij ȳi. =
yi.

n
ȳ.. =

y..
N

i = 1, 2, . . . , a

and N = (a · n) is the total number of observations.

In this lesson we will mostly work with the balance models, all factor levels
are replicated the same number of times.

01NEX - Lecture 02 -Comparing several treatment means, linear regression 2



Single factor experiment - models

Means model:

yij = µi + εij i = 1, 2, . . . , a j = 1, 2, . . . , ni ,

where yij is the ij th observation, µi is the mean of the i th factor level and εij is
random error.
Effects model:

yij = µ+ αi + εij i = 1, 2, . . . , a j = 1, 2, . . . , ni ,

where µ is overall mean of the measurements and αi is the i th effect of factor
A.
Standard definition of the overall mean is:

µ =
a∑

i=1

wiµi , where
a∑

i=1

wi = 1,

with the most frequent setting: wi = 1
a for i = 1, 2, . . . , a.

The weighted average is used when there are an unequal number of obser-
vations in each treatment. The weights wi could be taken as ni

N , for balanced
model ni = n, ∀i .
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Single factor experiment - models

Regression model without intercept for a single factor experiment:

yij = β1x1j + β2x2j + · · ·+ βnxnj + εij i = 1, 2, . . . , a j = 1, 2, . . . , ni ,

where the regression variables are indicators (i.e. take on the values 1, if
observation j is from treatment i , and 0 otherwise)

Y =


yn1

yn2

...
yna

 =


1n1 0 . . . 0
0 1n2 . . . 0
...

...
. . .

...
0 0 . . . 1na




β1

β2
...
βa

 +


εn1

εn2

...
εna

 = Xβ + ε

The relationship between the parameters in the Means and Regression model:

βi = µi i = 1, 2, . . . , a.
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Single factor experiment - models

Regression model with intercept for a single factor experiment:

yij = β1x1j + β2x2j + · · ·+ βnxnj + εij i = 1, 2, . . . , a j = 1, 2, . . . , ni ,

where x1j = 1, ∀j , and the others regression variables are indicators (i.e. take
on the values 1, if observation j is from treatment i , and 0 otherwise)

Y =


yn1

yn2

...
yna

 =


1n1 0 . . . 0
1n2 1n2 . . . 0
...

...
. . .

...
1na 0 . . . 1na




β1

β2
...
βa

 +


εn1

εn2

...
εna

 = Xβ + ε

The relationship between the parameters in the Effects and Regression model:

β1 = µ1 and βi = µi − µ1 i = 2, . . . , a.
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Analysis of Fixed effects model

We are interested in testing the equality of the a factor levels means:

E(yij ) = µ+ αi = µi i = 1, 2, . . . , a.

The appropriate hypothesis is:

H0 : µ1 = µ2 = · · · = µa.

H1 : µi 6= µj for at least one pair (i, j).

If we assume the homoscedasticity (the finite variance σ2 is constant for all
levels of factor and observations are mutually independent) and

yij ∼ N(µi , σ
2)

then the appropriate procedure for testing the equality of several means is:
analaysis of variance (ANOVA).
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Decomposition of Total Sum of Squares

Name ANOVA comes from a partitioning of total variability into its components
parts.
Overall total variability = between factor levels variability + within variability

SST = SSA + SSE

The total corrected sum of squares: SST =
∑a

i=1

∑n
j=1(yij − ȳ..)2

The sum of squares due to treatment A: SSA = n
∑a

i=1(ȳi. − ȳ..)2

The error sum of squares: SSE =
∑a

i=1

∑n
j=1(yij − ȳi.)

2

= SST − SSA

Mean squares:

MSA =
SSA

a− 1
, MSE =

SSE

N − a
.

Expected values of the mean squares:

E(MSE ) = σ2, E(MSA) = σ2 +
n
∑a

i=1 α
2
i

a− 1
.

MSE estimates σ2, and, if there are no differences in treatment means, MSA is
also an unbiased estimator of σ2.
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ANOVA table for Single - Factor, Fixed Effect Balanced Model
ANOVA table for Single - Factor, Fixed Effect Balanced Model

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Between
treatments SSA = n

∑a
i=1(ȳi. − ȳ..)2 a− 1 MSA F0 = MSA

MSE
Within
treatments SSE = SST − SSA N − a MSE

Total SST =
∑a

i=1

∑n
j=1(yij − ȳ..)2 N − 1

If data are unbalanced, the manual computational formulas for SST and SSA:

SST =
a∑

i=1

ni∑
j=1

y2
ij −

y2
..

N
and SSA =

a∑
i=1

y2
i.

ni
− y2

..

N
,

where ni is number of observations taken under treatment i and N =
∑a

i=1 ni .

Cochran’s theorem implies that SSA
σ2 and SSE

σ2 are independently distributed chi-
square random variables and the test statistic is given by:

F0 =

SSA
a−1
SSE
N−a

=
MSA

MSE
.
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ANOVA for simple comparative experiment
In simple comparative experiment the ANOVA model changes into simple t-
test.

Example from lecture 01:
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ANOVA for simple comparative experiment
In simple comparative experiment (see lecture 01) the ANOVA model changes
into simple t-test.

Example from lecture 01 and results in R:

> t.test(Factor1, Factor2 , alternative = "two.sided", mu = 0,
paired = FALSE, var.equal = TRUE, conf.level = 0.95)

Two Sample t-test
data: Modified and Unmodified
t = -2.1869, df = 18, p-value = 0.0422
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval: -0.54507339 -0.01092661
sample estimates: mean of x mean of y 16.764 17.042

> summary(aov(Response~Factor,data=data.cement))

Df Sum Sq Mean Sq F value Pr(>F)
Factor 1 0.3864 0.3864 4.782 0.0422 *
Residuals 18 1.4544 0.0808
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Example - Plasma Etching Experiment data

Etch Rate Data (in A/min) from Plasma Etching Experiment
Power Observations (5 runs)
(W ) 1 2 3 4 5 Totals Averages
160 575 542 530 539 570 2 756 551.2
180 565 593 590 579 610 2 937 587.4
200 600 651 610 637 629 3 127 625.4
220 725 700 715 685 710 3 535 707.0

y.. = 12355 ȳ.. = 617.75

20 runs were made in random order.

Performing all 6 pairwise t-tests is inefficient. It takes a lot of effort and it
inflates the type I error.
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Example - Plasma Etching Experiment data
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Example - Plasma Etching Experiment data
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Example - Plasma Etching Experiment data
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ANOVA for the Plasma Etching Experiment

> etch.rate.aov1 <- aov(rate~Power+Run,etch.rate)
> summary(etch.rate.aov1)

Df Sum Sq Mean Sq F value Pr(>F)
Power 3 66871 22290 62.369 1.37e-07 ***
Run 4 1051 263 0.735 0.586
Residuals 12 4289 357

> etch.rate.aov2 <- aov(rate~Power,etch.rate)
> summary(etch.rate.aov2)

Df Sum Sq Mean Sq F value Pr(>F)
Power 3 66871 22290 66.8 2.88e-09 ***
Residuals 16 5339 334

> anova(etch.rate.aov1,etch.rate.aov2)
Analysis of Variance Table
Model 1: rate ~ Power + Run
Model 2: rate ~ Power

Res.Df RSS Df Sum of Sq F Pr(>F)
1 12 4288.7
2 16 5339.2 -4 -1050.5 0.7348 0.5857
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ANOVA for the Plasma Etching Experiment

>anova(lm(rate~Power,etch.rate))
# same as
> summary(aov(rate~Power,etch.rate))

Df Sum Sq Mean Sq F value Pr(>F)
Power 3 66871 22290 66.8 2.88e-09 ***
Residuals 16 5339 334

SSE = SSResiduals = SSTotal − SSPower = 72209.75− 66870.55 = 5339.20

F0 =
22290.18

333.7
= 66.8

Because F0 = 66.8 > 5.29 = F0.01,3,16 we reject H0 at the significance level
α = 0.01 and conclude that the treatment means differ.
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Effect model for the Plasma Etching Experiment

> model1 = lm(rate~Power, data=etch.rate)
> summary(model1)
Call:
lm(formula = rate ~ Power, data = etch.rate)
Residuals:

Min 1Q Median 3Q Max
-25.4 -13.0 2.8 13.2 25.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 551.200 8.169 67.471 < 2e-16 ***
Power180 36.200 11.553 3.133 0.00642 **
Power200 74.200 11.553 6.422 8.44e-06 ***
Power220 155.800 11.553 13.485 3.73e-10 ***

> confint(model1, level = 0.95))
2.5 % 97.5 %

(Intercept) 533.88153 568.51847
Power180 11.70798 60.69202
Power200 49.70798 98.69202
Power220 131.30798 180.29202
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Means model for the Plasma Etching Experiment

> model2 = lm(rate~Power - 1, data=etch.rate)
> summary(model2)
Call:
lm(formula = rate ~ Power - 1, data = etch.rate)
Residuals:

Min 1Q Median 3Q Max
-25.4 -13.0 2.8 13.2 25.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Power160 551.200 8.169 67.47 <2e-16 ***
Power180 587.400 8.169 71.90 <2e-16 ***
Power200 625.400 8.169 76.55 <2e-16 ***
Power220 707.000 8.169 86.54 <2e-16 ***

> confint(model2, level = 0.95))
2.5 % 97.5 %

Power160 533.8815 568.5185
Power180 570.0815 604.7185
Power200 608.0815 642.7185
Power220 689.6815 724.3185

01NEX - Lecture 02 -Comparing several treatment means, linear regression 18



Means model for the Plasma Etching Experiment

100(1− α) percent confidence interval on the i th treatment mean µi is:

ȳi. − tα
2 ,N−a

√
MSE

n
≤ µi ≤ ȳi. + tα

2 ,N−a

√
MSE

n

> model2 = lm(rate~Power - 1, data=etch.rate)
2.5 % Estimate 97.5 %

Power160 533.8815 551.200 568.5185
Power180 570.0815 587.400 604.7185
Power200 608.0815 625.400 642.7185
Power220 689.6815 707.000 724.3185

Example of 95% confidence interval of treatment 4:

689.6815 = 707− 2.120

√
333.7

5
≤ µ4 ≤ 707 + 2.120

√
333.7

5
= 724.3185
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Treatment effects in the Plasma Etching Experiment

> overall mean of Plasma Etching Experiment data
> (erate.mean <- mean(etch.rate$rate))

617.75

> etch.rate.aov <- aov(rate~Power,etch.rate)
> model.tables(etch.rate.aov)
Tables of effects
Power

160 180 200 220
-66.55 -30.35 7.65 89.25

> (MSe <- summary(etch.rate.aov)[[1]][2,3])
333.7

> (SD <- sqrt(MSe/16))
4.566864
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ANOVA - Model Adequacy Checking

To check:
I Normality
I Independence
I Constant Variance

Useful instruments are residual plots:
I Residuals: eij = yij − ŷij = yij − ȳi.

I Standartized Residuals: dij =
eij√
MSE

I An adequate model produces residual plots that are structureless.
I Plot of Residuals vs. Fitted Values, Factor Levels, or Time Order should

be a band of “random noise”.
I Constant Variance
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Residuals

Residuals vs. Fitted Values:

I Trumpet: Error variance depends on the mean (Transformation)
I Arch: Possible need for second order term or transformation
I Constant increase, decrease: Error in analysis (Possible omission of

intercept)

Residuals vs. Factor Levels:

I Trumpet: Error variance depends on the factor (Variance Effect)
I Arch: Possible need for that factor’s quadratic term or transformation
I Constant increase, decrease: Error in analysis (Possible need to

include the main effect of the factor)

For more detailed discussion about the variance stabilizing transformations
see Box-Cox transformation (Box and Cox (1964)).
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Model Adequacy Checking for the Plasma Etching Experiment
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Model Adequacy Checking for the Plasma Etching Experiment - Equality
of Variance

Bartlett’s test:

> bartlett.test(rate~RF,data=etch.rate)
Bartlett test of homogeneity of variances
data: rate by RF
Bartlett’s K-squared = 0.4335, df = 3, p-value = 0.9332

Bartlett’s test is very sensitive to the normality assumption. When the validity
of this assumption is doubtful, this test should not be used.

Levene test:

> leveneTest(etch.rate.aov)
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 3 0.1959 0.8977

Levane’s test statistic is simply the usual ANOVA F statistic for testing equality
of means applied to the absolute deviations.
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Model Adequacy Checking for the Plasma Etching Experiment -
Normality

> y1 = etch.rate$rate[etch.rate$RF==160]

Shapiro-Wilk normality test:

Shapiro-Wilk normality test
data: y1
W = 0.8723, p-value = 0.2758

Kolmogorov-Smirnov test:

One-sample Kolmogorov-Smirnov test
data: y1
D = 0.2771, p-value = 0.7519
alternative hypothesis: two-sided
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The Plasma Etching Experiment - Regression Model
The factors involved in an experiment can be either quantitative or qualitative.

lm(formula = Erch_rate ~ Power1)
Residuals: Min 1Q Median 3Q Max

-43.02 -12.32 -1.21 16.71 33.06
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 137.6200 41.2108 3.339 0.00365 **
Power1 2.5270 0.2154 11.731 7.26e-10 ***
Residual standard error: 21.54 on 18 degrees of freedom
Multiple R-squared: 0.8843, Adjusted R-squared: 0.8779

lm(formula = Erch_rate ~ Power1 + Power2)
Residuals: Min 1Q Median 3Q Max

-31.67 - 14.75 1.48 13.08 28.87
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1147.77000 368.52081 3.115 0.00631 **
Power1 -8.25550 3.91993 -2.106 0.05037 .
Power2 0.02838 0.01030 2.754 0.01356 *
Residual standard error: 18.43 on 17 degrees of freedom
Multiple R-squared: 0.92, Adjusted R-squared: 0.9106
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The Plasma Etching Experiment - Regression Model
Comparison of two regressions models, with and without curvature (square of
explanatory variable).
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Multiple comparisons problem (multiple testing problem)

History (from Wikipedia):
The interest in the problem of multiple comparisons began in the 1950s with
the work of Tukey and Scheffé. New methods and procedures came out:
Closed testing procedure (Marcus et al., 1976), Holm–Bonferroni method (1979).
Later, in the 1980s, the issue of multiple comparisons came back (Hochberg
and Tamhane (1987), Westfall and Young (1993), and Hsu (1996)).

Example:
For example, if one test is performed at the 5% level, there is only a 5% chance
of incorrectly rejecting the null hypothesis if the null hypothesis is true. How-
ever, for 100 tests where all null hypotheses are true, the expected number of
incorrect rejections is 5. If the tests are independent, the probability of at least
one incorrect rejection is 99.4%.

In R:
You can use the function pairwise.t.test with different with different corrections:
( "hochberg", "bonferroni", "holm", "hommel","BH", "BY", "fdr", "none"). For
details see p.adjust.methods.
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Post-ANOVA Comparison of Means for The Plasma Etching Experiment

> pairwise.t.test(Erch_rate,Power1,p.adjust.method="bonferroni")
Pairwise comparisons using t tests with pooled SD

data: Erch_rate and Power1
160 180 200

180 0.038 - -
200 5.1e-05 0.028 -
220 2.2e-09 1.0e-07 1.6e-05
P value adjustment method: bonferroni

> pairwise.t.test(Erch_rate,Power1,p.adjust.method="hochberg")
Pairwise comparisons using t tests with pooled SD

data: Erch_rate and Power1
160 180 200

180 0.0064 - -
200 2.5e-05 0.0064 -
220 2.2e-09 8.5e-08 1.1e-05
P value adjustment method: hochberg
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Tukey HSD for the The Plasma Etching Experiment
Tukey (1953) proposed a procedure for testing hypothesis for which the overall
significance level is exactly α when sample size are ni and nj .
Studentized range statistic:

q =
ȳmax − ȳmin√
MSE

2 ( 1
ni

+ 1
nj

)

where ȳmax and ȳmin are the largest and smallest sample means.
Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds

Tα = qα(a, f )

√
MSE

2
(

1
ni

+
1
nj

),

where a is number of levels and f is number of degrees of freedom for error.
qα(a, f )’s are tabularized.
Plasma etching experiment example:

T0.05 = q0.05(4, 16)

√
MSE

n
= 4.05

√
333.7

5
= 33.09

Thus, any pair of treatment averages that differ in absolute value by more
than 33.09 would imply that the corresponding pair of population means are
significantly different.
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Tukey HSD for the The Plasma Etching Experiment

Create a set of confidence intervals on the differences between the means of
the levels of a factor. The intervals are based on the Tukeys Honest Significant
Difference method.

> TukeyHSD(etch.rate.aov, ordered = FALSE,conf.level = 0.95)
Tukey multiple comparisons of means 95 confidence level

Fit: aov(formula = rate ~ Power, data = etch.rate)
Power diff lwr upr p adj
180-160 36.2 3.145624 69.25438 0.0294279
200-160 74.2 41.145624 107.25438 0.0000455
220-160 155.8 122.745624 188.85438 0.0000000
200-180 38.0 4.945624 71.05438 0.0215995
220-180 119.6 86.545624 152.65438 0.0000001
220-200 81.6 48.545624 114.65438 0.0000146
> plot(TukeyHSD(etch.rate.aov, ordered = FALSE,...

conf.level = 0.95,las=1) )
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Tukey HSD for the Plasma Etching Experiment
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Fisher’s LSD for the The Plasma Etching Experiment Method

Fisher’s Least Significant Difference Method uses the t statistic for testing H0 :
µi = µj :

t0 =
ȳi. − ȳj.√

MSE ( 1
ni

+ 1
nj

)

Assuming a two-sided alternative. The quantity

LSD = tα
2 ,N−a

√
MSE (

1
ni

+
1
nj

)

is called the least significance difference. If |ȳi.− ȳj.| > LSD, we conclude that
the population means µi and µj differ.
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Fisher’s LSD for the The Plasma Etching Experiment Method

Fisher’s Least Significant Difference Method at α = 0.05 for he Plasma Etch-
ing Experiment Method is:

LSD = t0.025,16

√
2MSE

n
= 2.120

√
2(333.7)

5
= 24.49

Thus, any pair of treatment averages that differ in absolute value by more
than 24.49 would imply that the corresponding pair of population means are
significantly different.
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Fisher’s LSD

> LSD.test(etch.rate$rate, etch.rate$Power, 16,334)
Study: LSD t Test for etch.rate$rate
Mean Square Error: 334
etch.rate$Power, means and individual ( 95 %) CI

etch.rate.rate std.err r LCL UCL Min. Max.
160 551.2 8.952095 5 532.2224 570.1776 530 575
180 587.4 7.487323 5 571.5276 603.2724 565 610
200 625.4 9.179325 5 605.9407 644.8593 600 651
220 707.0 6.819091 5 692.5442 721.4558 685 725
alpha: 0.05 ; Df Error: 16
Critical Value of t: 2.119905
Least Significant Difference 24.50302
Means with the same letter are not significantly different.
Groups, Treatments and means
a 220 707
b 200 625.4
c 180 587.4
d 160 551.2
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Sample Size Determination

I Sample size depends on type of experiment, how it will be conducted,
resources, and desired sensitivity

I Sensitivity refers to the difference in means that the experimenter
wishes to detect

I Generally, increasing the number of replications increases the
sensitivity or it makes it easier to detect small differences in means
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Sample Size Determination

Operating characteristic (OC) curve is a plot of type II error probability of
statistical test for a particular sample size versus a parameter that reflects the
space to witch the null hypothesis is false. For single factor fixed effects model:

β = 1− P [Reject H0 | H0 is false] = 1− P [F0 > Fα,a−1,N−a | H0 is false]

It can be shown that, if H0 is false, the statistic F0 = MSA
MSE

is distributed as a
noncentral F random variable with a− 1 and N-a degrees of freedom and the
noncentrality parameter δ.

Operating characteristic curves plot β against a parameter Φ2

Φ2 =
n
∑a

i=1(µi − µ̄)2

aσ2 .
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Sample Size Determination
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Sample Size Determination for the Plasma Etching Experiment

One way how to use OC curves is to define a difference in two means D of
interest, then the minimum value of Φ2 is

Φ2 =
nD2

2aσ2

In Plasma Etching Experiment, suppose we would like to reject the null hy-
pothesis with a probability of at least 0.90 if any two treatment means differed
by as much as 75 A/minute and α = 0.01.

Sample Size Determination for the Plasma Etching Experiment
Sample DF

size Φ2 Φ for errors Power
4 4.50 2.12 12 0.61
5 5.62 2.37 16 0.80
6 6.75 2.60 20 0.92
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Sample Size Determination for the Plasma Etching Experiment

In the Plasma Etching Experiment, suppose we would like to reject the null hy-
pothesis with a probability of at least 0.90 if any two treatment means differed
by as much as 75 A/minute and α = 0.01.

> nn = seq(4,10,by=1)
> sd = 25
> max_difference = 75
> DF = 3
> beta <- c(NA,nr=length(sd),nc=length(nn))
> for (i in 1:length(sd))
+ beta[i,] <- power.anova.test(groups=4,n= nn,

between.var = (max_difference^2)/(2*DF),
within.var=(sd^2), sig.level=.01)$power

4 5 6 7 8 9 10
Power 0.6064585 0.8048383 0.915384 0.9669989 0.9881851 0.9960593 0.9987619
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Sample Size Determination for the Plasma Etching Experiment

Power computation for given ANOVA table from the Plasma Etching Experi-
ment:

power.anova.test(groups=4, n=5, between.var = MS_A ,
within.var= MS_E , sig.level=.01)$power

Balanced one-way analysis of variance power calculation
groups = 4

n = 5
between.var = 22290
within.var = 334
sig.level = 0.01

power = 1
NOTE: n is number in each group
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Sample Size Determination for the Plasma Etching Experiment

Example of sample size computation:

> power.anova.test(groups=4, power = 0.9,
between.var = 1000,
within.var=500 , sig.level=.01)

Balanced one-way analysis of variance power calculation
groups = 4

n = 4.764321
between.var = 1000
within.var = 500
sig.level = 0.01

power = 0.9
NOTE: n is number in each group

01NEX - Lecture 02 -Comparing several treatment means, linear regression 42



Sample Size Determination
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Today Exercise & Next lecture

Today Exercise:
I Do exercise 3.7, 3.8, 3.9, and 3.10.
I Use the R to create and analyze given designs.

Data and exercises come from D.C. Montgomery: Design and Analysis of
Experiment.
Next Lectures: Randomized blocks, Latin Squares.

I Randomized blocks,
I Latin Square design,
I Graeco-Latin Squaree design,
I Balanced Incomplete Block design,
I First Homework - real measurement during the lesson.
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Exercises 3.07
The tensile strength of Portland cement is being studied. Four different mixing tech-
niques can be used economically. A completely randomized experiment was conducted
and the following data were collected:

Mixing Technique Tensile Strength (lb/in2)
1 3129 3000 2865 2890
2 3200 3300 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765

1. Test the hypothesis that mixing techniques affect the strength of the cement. Use
α = 0.05.

2. Construct a graphical display as described in Section 3.5.3 to compare the mean
tensile strengths for the four mixing techniques. What are your conclusions?

3. Use the Fisher LSD method with α = 0.05 to make comparisons between pairs
of means.

4. Construct a normal probability plot of the residuals. What conclusion would you
draw about the validity of the normality assumption?

5. Plot the residuals versus the predicted tensile strength. Comment on the plot.

6. Prepare a scatter plot of the results to aid the interpretation of the results of this
experiment.
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Exercises 3.08 and 3.09

Reconsider the experiment in Problem 3.07.

1. Rework part (3) of Problem 3.07 using Tukey’s test with α = 0.05. Do you get the
same conclusions from Tukey’s test that you did from the graphical procedure
and/or the Fisher LSD method?

2. Explain the difference between the Tukey and Fisher procedures.

3. Find a 95 percent confidence interval on the mean tensile strength of the
Portland cement produced by each of the four mixing techniques. Also find a 95
percent confidence interval on the difference in means for techniques 1 and 3.
Does this aid you in interpreting the results of the experiment?
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Exercises 3.10

A product developer is investigating the tensile strength of a new synthetic fiber that will
be used to make cloth for men’s shirts. Strength is usually affected by the percentage of
cotton used in the blend of materials for the fiber. The engineer conducts a completely
randomized experiment with five levels of cotton content and replicates the experiment
five times.

Cotton Weight Percent Observations
15 7 7 15 11 9
20 12 17 12 18 18
25 14 19 19 18 18
30 19 25 22 19 23
35 7 10 11 15 11

1. Is there evidence to support the claim that cotton content affects the mean
tensile strength? Use α = 0.05.

2. Use the Fisher LSD method to make comparisons between the pairs of means.
What conclusions can you draw?

3. Analyze the residuals from this experiment and comment on model adequacy.
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